# Mathematics Courses of Instruction

## Mathematics Courses of Instruction

**MATH UN1003 College Algebra and Analytic Geometry.** *3 points*.

Prerequisites: score of 550 on the mathematics portion of the SAT completed within the last year or the appropriate grade on the General Studies Mathematics Placement Examination.

Columbia College students do not receive any credit for this course and must see their CSA advising dean. For students who wish to study calculus but do not know analytic geometry. Algebra review, graphs and functions, polynomial functions, rational functions, conic sections, systems of equations in two variables, exponential and logarithmic functions, trigonometric functions and trigonometric identities, applications of trigonometry, sequences, series, and limits.

Spring 2020: MATH UN1003 |
|||||

Course Number | Section/Call Number | Times/Location | Instructor | Points | Enrollment |
---|---|---|---|---|---|

MATH 1003 | 002/12023 | T Th 11:40am - 12:55pm 407 Mathematics Building |
Yier Lin | 3 | 10/30 |

MATH 1003 | 003/00593 | M W 6:10pm - 7:25pm 302 Barnard Hall |
Lindsay Piechnik | 3 | 26/36 |

Fall 2020: MATH UN1003 |
|||||

Course Number | Section/Call Number | Times/Location | Instructor | Points | Enrollment |

MATH 1003 | 001/11290 | M W 6:10pm - 7:25pm Room TBA |
Alexander Pieloch | 3 | 4/30 |

MATH 1003 | 002/11291 | T Th 2:40pm - 3:55pm Room TBA |
Mrudul Thatte | 3 | 6/30 |

**MATH UN1101 Calculus I.** *3 points*.

*Prerequisites: (see Courses for First-Year Students).* Functions, limits, derivatives, introduction to integrals, or an understanding of pre-calculus will be assumed.

The Help Room in 333 Milbank Hall (Barnard College) is open during the day, Monday through Friday, to students seeking individual help from the teaching assistants. **(SC)**

Spring 2020: MATH UN1101 |
|||||

Course Number | Section/Call Number | Times/Location | Instructor | Points | Enrollment |
---|---|---|---|---|---|

MATH 1101 | 001/13846 | M W 11:40am - 12:55pm 407 Mathematics Building |
Cailan Li | 3 | 20/30 |

MATH 1101 | 002/12024 | M W 2:40pm - 3:55pm 203 Mathematics Building |
Akash Sengupta | 3 | 72/110 |

MATH 1101 | 003/12025 | M W 6:10pm - 7:25pm 407 Mathematics Building |
Gerhardt Hinkle | 3 | 20/30 |

MATH 1101 | 004/12026 | T Th 10:10am - 11:25am 203 Mathematics Building |
Alexandra Florea | 3 | 85/110 |

MATH 1101 | 005/12027 | T Th 11:40am - 12:55pm 203 Mathematics Building |
William Chen | 3 | 44/110 |

Fall 2020: MATH UN1101 |
|||||

Course Number | Section/Call Number | Times/Location | Instructor | Points | Enrollment |

MATH 1101 | 002/11292 | M W 10:10am - 11:25am Room TBA |
Daniele Alessandrini | 3 | 10/116 |

MATH 1101 | 003/11293 | M W 11:40am - 12:55pm Room TBA |
Daniele Alessandrini | 3 | 3/116 |

MATH 1101 | 004/11294 | M W 1:10pm - 2:25pm Room TBA |
Akash Sengupta | 3 | 10/110 |

MATH 1101 | 005/11295 | M W 2:40pm - 3:55pm Room TBA |
Akash Sengupta | 3 | 13/110 |

MATH 1101 | 006/11296 | M W 4:10pm - 5:25pm Room TBA |
Chung Hang Kwan | 3 | 4/30 |

MATH 1101 | 007/11297 | T Th 10:10am - 11:25am Room TBA |
George Dragomir | 3 | 16/100 |

MATH 1101 | 008/11298 | T Th 11:40am - 12:55pm Room TBA |
Robin Zhang | 3 | 14/30 |

MATH 1101 | 009/11299 | T Th 1:10pm - 2:25pm Room TBA |
George Dragomir | 3 | 6/100 |

MATH 1101 | 010/11300 | T Th 4:10pm - 5:25pm Room TBA |
3 | 2/100 |

**MATH UN1102 Calculus II.** *3 points*.

Prerequisites: MATH UN1101 or the equivalent.

Methods of integration, applications of the integral, Taylor's theorem, infinite series. (SC)

Spring 2020: MATH UN1102 |
|||||

Course Number | Section/Call Number | Times/Location | Instructor | Points | Enrollment |
---|---|---|---|---|---|

MATH 1102 | 001/12029 | M W 1:10pm - 2:25pm 207 Mathematics Building |
Yi Sun | 3 | 43/125 |

MATH 1102 | 002/12030 | M W 2:40pm - 3:55pm 407 Mathematics Building |
Semen Rezchikov | 3 | 32/35 |

MATH 1102 | 003/12031 | T Th 11:40am - 12:55pm 207 Mathematics Building |
Michael Woodbury | 3 | 51/125 |

MATH 1102 | 004/12032 | T Th 6:10pm - 7:25pm 407 Mathematics Building |
Iakov Kononov | 3 | 18/30 |

Fall 2020: MATH UN1102 |
|||||

Course Number | Section/Call Number | Times/Location | Instructor | Points | Enrollment |

MATH 1102 | 001/11302 | M W 11:40am - 12:55pm Room TBA |
Maithreya Sitaraman | 3 | 10/30 |

MATH 1102 | 002/11303 | M W 2:40pm - 3:55pm Room TBA |
Renata Picciotto | 3 | 15/30 |

MATH 1102 | 003/11304 | M W 4:10pm - 5:25pm Room TBA |
3 | 2/110 | |

MATH 1102 | 004/11305 | T Th 10:10am - 11:25am Room TBA |
3 | 8/110 | |

MATH 1102 | 005/00434 | T Th 2:40pm - 3:55pm Room TBA |
Lindsay Piechnik | 3 | 33/100 |

MATH 1102 | 006/11306 | T Th 6:10pm - 7:25pm Room TBA |
Elliott Stein | 3 | 18/45 |

**MATH UN1201 Calculus III.** *3 points*.

Prerequisites: MATH UN1101 or the equivalent

Vectors in dimensions 2 and 3, complex numbers and the complex exponential function with applications to differential equations, Cramer's rule, vector-valued functions of one variable, scalar-valued functions of several variables, partial derivatives, gradients, surfaces, optimization, the method of Lagrange multipliers. (SC)

Spring 2020: MATH UN1201 |
|||||

Course Number | Section/Call Number | Times/Location | Instructor | Points | Enrollment |
---|---|---|---|---|---|

MATH 1201 | 001/12037 | M W 10:10am - 11:25am 207 Mathematics Building |
Carolyn Abbott | 3 | 45/125 |

MATH 1201 | 002/12039 | M W 11:40am - 12:55pm 602 Hamilton Hall |
Konstantin Aleshkin | 3 | 21/125 |

MATH 1201 | 003/12040 | M W 2:40pm - 3:55pm 312 Mathematics Building |
Igor Krichever | 3 | 99/120 |

MATH 1201 | 004/12041 | T Th 1:10pm - 2:25pm 312 Mathematics Building |
Stephen Miller | 3 | 87/116 |

MATH 1201 | 005/12042 | T Th 6:10pm - 7:25pm 207 Mathematics Building |
Inbar Klang | 3 | 130/130 |

Fall 2020: MATH UN1201 |
|||||

Course Number | Section/Call Number | Times/Location | Instructor | Points | Enrollment |

MATH 1201 | 001/11389 | M W 10:10am - 11:25am Room TBA |
Konstantin Aleshkin | 3 | 15/110 |

MATH 1201 | 002/11390 | M W 11:40am - 12:55pm Room TBA |
Konstantin Aleshkin | 3 | 4/110 |

MATH 1201 | 003/11394 | M W 1:10pm - 2:25pm Room TBA |
Ovidiu Savin | 3 | 18/110 |

MATH 1201 | 004/11398 | T Th 10:10am - 11:25am Room TBA |
Carolyn Abbott | 3 | 19/116 |

MATH 1201 | 005/11402 | T Th 11:40am - 12:55pm Room TBA |
Evan Warner | 3 | 26/116 |

MATH 1201 | 006/11407 | T Th 2:40pm - 3:55pm Room TBA |
Inbar Klang | 3 | 68/100 |

MATH 1201 | 007/11412 | T Th 4:10pm - 5:25pm Room TBA |
Inbar Klang | 3 | 28/100 |

MATH 1201 | 008/11417 | T Th 6:10pm - 7:25pm Room TBA |
Guillaume Remy | 3 | 4/116 |

**MATH UN1202 Calculus IV.** *3 points*.

Prerequisites: MATH UN1102 and MATH UN1201 or the equivalent

Multiple integrals, Taylor's formula in several variables, line and surface integrals, calculus of vector fields, Fourier series. (SC)

Spring 2020: MATH UN1202 |
|||||

Course Number | Section/Call Number | Times/Location | Instructor | Points | Enrollment |
---|---|---|---|---|---|

MATH 1202 | 001/00067 | T Th 10:10am - 11:25am 202 Milbank Hall |
Daniela De Silva | 3 | 35/100 |

MATH 1202 | 002/00275 | T Th 2:40pm - 3:55pm 202 Milbank Hall |
Lindsay Piechnik | 3 | 37/100 |

Fall 2020: MATH UN1202 |
|||||

Course Number | Section/Call Number | Times/Location | Instructor | Points | Enrollment |

MATH 1202 | 001/11421 | T Th 10:10am - 11:25am Room TBA |
Stephen Miller | 3 | 33/64 |

MATH 1202 | 002/11424 | M W 6:10pm - 7:25pm Room TBA |
Mikhail Smirnov | 3 | 37/116 |

**MATH UN1207 Honors Mathematics A.** *4 points*.

*Prerequisites: (see Courses for First-Year Students). * The second term of this course may not be taken without the first. Multivariable calculus and linear algebra from a rigorous point of view. Recommended for mathematics majors. Fulfills the linear algebra requirement for the major. (SC)

Fall 2020: MATH UN1207 |
|||||

Course Number | Section/Call Number | Times/Location | Instructor | Points | Enrollment |
---|---|---|---|---|---|

MATH 1207 | 001/11430 | T Th 1:10pm - 2:25pm Room TBA |
Evan Warner | 4 | 3/110 |

**MATH UN1208 Honors Mathematics B.** *4 points*.

Prerequisites: (see Courses for First-Year Students).

The second term of this course may not be taken without the first. Multivariable calculus and linear algebra from a rigorous point of view. Recommended for mathematics majors. Fulfills the linear algebra requirement for the major. (SC)

Spring 2020: MATH UN1208 |
|||||

Course Number | Section/Call Number | Times/Location | Instructor | Points | Enrollment |
---|---|---|---|---|---|

MATH 1208 | 001/12047 | M W 4:10pm - 5:25pm 312 Mathematics Building |
Evan Warner | 4 | 39/100 |

**MATH UN2000 An Introduction to Higher Mathematics.** *3 points*.

Introduction to understanding and writing mathematical proofs. Emphasis on precise thinking and the presentation of mathematical results, both in oral and in written form. Intended for students who are considering majoring in mathematics but wish additional training. CC/GS: Partial Fulfillment of Science Requirement. BC: Fulfillment of General Education Requirement: Quantitative and Deductive Reasoning (QUA).

Spring 2020: MATH UN2000 |
|||||

Course Number | Section/Call Number | Times/Location | Instructor | Points | Enrollment |
---|---|---|---|---|---|

MATH 2000 | 001/00068 | M W 2:40pm - 3:55pm 805 Altschul Hall |
Dusa McDuff | 3 | 23/55 |

Fall 2020: MATH UN2000 |
|||||

Course Number | Section/Call Number | Times/Location | Instructor | Points | Enrollment |

MATH 2000 | 001/11446 | M W 11:40am - 12:55pm Room TBA |
Gus Schrader | 3 | 20/49 |

**MATH BC2001 Perspectives in Mathematics.** *1 point*.

Prerequisites: some calculus or the instructor's permission.

Intended as an enrichment to the mathemathics curriculum of the first years, this course introduces a variety of mathematical topics (such as three dimensional geometry, probability, number theory) that are often not discussed until later, and explains some current applications of mathematics in the sciences, technology and economics.

Fall 2020: MATH BC2001 |
|||||

Course Number | Section/Call Number | Times/Location | Instructor | Points | Enrollment |
---|---|---|---|---|---|

MATH 2001 | 001/00116 | T 6:10pm - 7:25pm Room TBA |
Dusa McDuff | 1 | 8/40 |

**MATH BC2006 Combinatorics.** *3 points*.

Corequisites: *MATH V2010* is helpful as a corequisite, but not required.

Honors-level introductory course in enumerative combinatorics. Pigeonhole principle, binomial coefficients, permutations and combinations. Polya enumeration, inclusion-exclusion principle, generating functions and recurrence relations.

**MATH UN2010 Linear Algebra.** *3 points*.

Prerequisites: MATH UN1201 or the equivalent.

Matrices, vector spaces, linear transformations, eigenvalues and eigenvectors, canonical forms, applications. (SC)

Spring 2020: MATH UN2010 |
|||||

Course Number | Section/Call Number | Times/Location | Instructor | Points | Enrollment |
---|---|---|---|---|---|

MATH 2010 | 001/12050 | M W 10:10am - 11:25am 203 Mathematics Building |
Alexis Drouot | 3 | 37/110 |

MATH 2010 | 002/12051 | M W 11:40am - 12:55pm 203 Mathematics Building |
Gus Schrader | 3 | 105/110 |

MATH 2010 | 003/12052 | T Th 10:10am - 11:25am 312 Mathematics Building |
Henry Pinkham | 3 | 17/116 |

MATH 2010 | 004/12053 | T Th 2:40pm - 3:55pm 207 Mathematics Building |
Nathan Dowlin | 3 | 102/125 |

MATH 2010 | 005/12054 | T Th 6:10pm - 7:25pm 520 Mathematics Building |
Elliott Stein | 3 | 18/45 |

Fall 2020: MATH UN2010 |
|||||

Course Number | Section/Call Number | Times/Location | Instructor | Points | Enrollment |

MATH 2010 | 001/00117 | T Th 8:40am - 9:55am Room TBA |
David Bayer | 3 | 21/100 |

MATH 2010 | 002/00118 | T Th 10:10am - 11:25am Room TBA |
David Bayer | 3 | 37/100 |

MATH 2010 | 003/11450 | M W 4:10pm - 5:25pm Room TBA |
Francesco Lin | 3 | 64/100 |

MATH 2010 | 004/11453 | M W 11:40am - 12:55pm Room TBA |
Kyle Hayden | 3 | 55/100 |

MATH 2010 | 005/11455 | T Th 6:10pm - 7:25pm Room TBA |
Giulia Sacca | 3 | 38/100 |

**MATH UN2020 Honors Linear Algebra.** *3 points*.

**Not offered during 2019-20 academic year.**

*Prerequisites: MATH UN1201. * A more extensive treatment of the material in MATH UN2010, with increased emphasis on proof. Not to be taken in addition to MATH UN2010 or MATH UN1207-MATH UN1208.

**MATH UN2030 Ordinary Differential Equations.** *3 points*.

Prerequisites: MATH UN1102 and MATH UN1201 or the equivalent.

Special differential equations of order one. Linear differential equations with constant and variable coefficients. Systems of such equations. Transform and series solution techniques. Emphasis on applications.

Spring 2020: MATH UN2030 |
|||||

Course Number | Section/Call Number | Times/Location | Instructor | Points | Enrollment |
---|---|---|---|---|---|

MATH 2030 | 001/12103 | T Th 4:10pm - 5:25pm 312 Mathematics Building |
Kyler Siegel | 3 | 96/116 |

MATH 2030 | 002/12104 | T Th 6:10pm - 7:25pm 312 Mathematics Building |
Kyler Siegel | 3 | 37/116 |

Fall 2020: MATH UN2030 |
|||||

Course Number | Section/Call Number | Times/Location | Instructor | Points | Enrollment |

MATH 2030 | 001/11457 | M W 1:10pm - 2:25pm Room TBA |
Florian Johne | 3 | 54/116 |

MATH 2030 | 002/11461 | M W 2:40pm - 3:55pm Room TBA |
Florian Johne | 3 | 33/116 |

**MATH UN2500 Analysis and Optimization.** *3 points*.

Prerequisites: MATH UN1102 and MATH UN1201 or the equivalent and MATH UN2010.

Mathematical methods for economics. Quadratic forms, Hessian, implicit functions. Convex sets, convex functions. Optimization, constrained optimization, Kuhn-Tucker conditions. Elements of the calculus of variations and optimal control. (SC)

Spring 2020: MATH UN2500 |
|||||

Course Number | Section/Call Number | Times/Location | Instructor | Points | Enrollment |
---|---|---|---|---|---|

MATH 2500 | 001/12105 | M W 1:10pm - 2:25pm 312 Mathematics Building |
Kanstantsin Matetski | 3 | 29/110 |

MATH 2500 | 002/12107 | M W 4:10pm - 5:25pm 207 Mathematics Building |
Kanstantsin Matetski | 3 | 43/125 |

Fall 2020: MATH UN2500 |
|||||

Course Number | Section/Call Number | Times/Location | Instructor | Points | Enrollment |

MATH 2500 | 001/11464 | T Th 1:10pm - 2:25pm Room TBA |
Kanstantsin Matetski | 3 | 41/64 |

MATH 2500 | 002/11466 | T 2:40pm - 3:55pm Room TBA |
Kanstantsin Matetski | 3 | 39/64 |

**MATH UN3007 Complex Variables.** *3 points*.

Prerequisites: MATH UN1202 An elementary course in functions of a complex variable.

Fundamental properties of the complex numbers, differentiability, Cauchy-Riemann equations. Cauchy integral theorem. Taylor and Laurent series, poles, and essential singularities. Residue theorem and conformal mapping.(SC)

Fall 2020: MATH UN3007 |
|||||

Course Number | Section/Call Number | Times/Location | Instructor | Points | Enrollment |
---|---|---|---|---|---|

MATH 3007 | 001/11470 | M W 2:40pm - 3:55pm Room TBA |
Nicholas Salter | 3 | 64/64 |

**MATH UN3020 Number Theory and Cryptography.** *3 points*.

Prerequisites: one year of calculus.

Prerequisite: One year of Calculus. Congruences. Primitive roots. Quadratic residues. Contemporary applications.

Spring 2020: MATH UN3020 |
|||||

Course Number | Section/Call Number | Times/Location | Instructor | Points | Enrollment |
---|---|---|---|---|---|

MATH 3020 | 001/12108 | M W 10:10am - 11:25am 312 Mathematics Building |
Shotaro Makisumi | 3 | 94/116 |

**MATH UN3025 Making, Breaking Codes.** *3 points*.

Prerequisites: (MATH UN1101 and MATH UN1102 and MATH UN1201) and and MATH UN2010.

A concrete introduction to abstract algebra. Topics in abstract algebra used in cryptography and coding theory.

Fall 2020: MATH UN3025 |
|||||

Course Number | Section/Call Number | Times/Location | Instructor | Points | Enrollment |
---|---|---|---|---|---|

MATH 3025 | 001/11471 | T Th 1:10pm - 2:25pm Room TBA |
Dorian Goldfeld | 3 | 74/116 |

**MATH UN3027 Ordinary Differential Equations.** *3 points*.

Prerequisites: MATH UN1102 and MATH UN1201 or the equivalent.

Corequisites: MATH UN2010

Equations of order one; systems of linear equations. Second-order equations. Series solutions at regular and singular points. Boundary value problems. Selected applications.

Fall 2020: MATH UN3027 |
|||||

Course Number | Section/Call Number | Times/Location | Instructor | Points | Enrollment |
---|---|---|---|---|---|

MATH 3027 | 001/11478 | T Th 11:40am - 12:55pm Room TBA |
Simon Brendle | 3 | 56/116 |

**MATH UN3028 Partial Differential Equations.** *3 points*.

Prerequisites: MATH UN3027 and MATH UN2010 or the equivalent

Introduction to partial differential equations. First-order equations. Linear second-order equations; separation of variables, solution by series expansions. Boundary value problems.

Spring 2020: MATH UN3028 |
|||||

Course Number | Section/Call Number | Times/Location | Instructor | Points | Enrollment |
---|---|---|---|---|---|

MATH 3028 | 001/12110 | T Th 11:40am - 12:55pm 312 Mathematics Building |
Panagiota Daskalopoulos | 3 | 42/100 |

**MATH UN3050 Discrete Time Models in Finance.** *3 points*.

Prerequisites: (MATH UN1102 and MATH UN1201) or (MATH UN1101 and MATH UN1102 and MATH UN1201) and MATH UN2010 Recommended: MATH UN3027 (or MATH UN2030 and SIEO W3600).

Elementary discrete time methods for pricing financial instruments, such as options. Notions of arbitrage, risk-neutral valuation, hedging, term-structure of interest rates.

Spring 2020: MATH UN3050 |
|||||

Course Number | Section/Call Number | Times/Location | Instructor | Points | Enrollment |
---|---|---|---|---|---|

MATH 3050 | 001/12111 | M W 6:10pm - 7:25pm 203 Mathematics Building |
Mikhail Smirnov | 3 | 56/100 |

**MATH UN3386 Differential Geometry.** *3 points*.

Prerequisites: MATH UN1202 or the equivalent.

Local and global differential geometry of submanifolds of Euclidiean 3-space. Frenet formulas for curves. Various types of curvatures for curves and surfaces and their relations. The Gauss-Bonnet theorem.

Fall 2020: MATH UN3386 |
|||||

Course Number | Section/Call Number | Times/Location | Instructor | Points | Enrollment |
---|---|---|---|---|---|

MATH 3386 | 001/11484 | T Th 11:40am - 12:55pm Room TBA |
Richard Hamilton | 3 | 34/49 |

**MATH UN3901 Supervised Readings in Mathematics I.** *2-3 points*.

*Prerequisites:* The written permission of the staff member who agrees to act as sponsor (sponsorship limited to full-time instructors on the staff list), as well as the permission of the Director of Undergraduate Studies. *The written permission must be deposited with the Director of Undergraduate Studies before registration is completed.* Guided reading and study in mathematics. A student who wishes to undertake individual study under this program must present a specific project to a member of the staff and secure his or her willingness to act as sponsor. Written reports and periodic conferences with the instructor.

**MATH UN3902 Supervised Readings in Mathematics II.** *2-3 points*.

*Prerequisites:* The written permission of the staff member who agrees to act as sponsor (sponsorship limited to full-time instructors on the staff list), as well as the permission of the Director of Undergraduate Studies. *The written permission must be deposited with the Director of Undergraduate Studies before registration is completed. * Guided reading and study in mathematics. A student who wishes to undertake individual study under this program must present a specific project to a member of the staff and secure his or her willingness to act as sponsor. Written reports and periodic conferences with the instructor.

Spring 2020: MATH UN3902 |
|||||

Course Number | Section/Call Number | Times/Location | Instructor | Points | Enrollment |
---|---|---|---|---|---|

MATH 3902 | 001/20030 | |
Hui Yu | 2-3 | 2/5 |

MATH 3902 | 002/36334 | |
Song Yu | 2-3 | 1/5 |

MATH 3902 | 003/36679 | |
Florian Johne | 2-3 | 3/5 |

MATH 3902 | 004/36716 | |
Ovidiu Savin | 2-3 | 1/5 |

MATH 3902 | 005/36952 | |
Gus Schrader | 2-3 | 0/5 |

MATH 3902 | 006/37007 | |
Mikhail Smirnov | 2-3 | 1/5 |

MATH 3902 | 007/37039 | |
Nathan Dowlin | 2-3 | 1/5 |

MATH 3902 | 008/37178 | |
Mu-Tao Wang | 2-3 | 1/5 |

**MATH UN3951 Undergraduate Seminars in Mathematics I.** *3 points*.

Prerequisites: Two years of calculus, at least one year of additional mathematics courses, and the director of undergraduate studies' permission.

The subject matter is announced at the start of registration and is different in each section. Each student prepares talks to be given to the seminar, under the supervision of a faculty member or senior teaching fellow.

Fall 2020: MATH UN3951 |
|||||

Course Number | Section/Call Number | Times/Location | Instructor | Points | Enrollment |
---|---|---|---|---|---|

MATH 3951 | 001/00120 | |
Daniela De Silva | 3 | 32/64 |

MATH 3951 | 002/00121 | M W 6:10pm - 7:25pm Room TBA |
3 | 9/15 |

**MATH UN3952 Undergraduate Seminars in Mathematics II.** *3 points*.

Prerequisites: two years of calculus, at least one year of additional mathematics courses, and the director of undergraduate studies' permission.

The subject matter is announced at the start of registration and is different in each section. Each student prepares talks to be given to the seminar, under the supervision of a faculty member or senior teaching fellow. Prerequisite: two years of calculus, at least one year of additional mathematics courses, and the director of undergraduate studies' permission.

Spring 2020: MATH UN3952 |
|||||

Course Number | Section/Call Number | Times/Location | Instructor | Points | Enrollment |
---|---|---|---|---|---|

MATH 3952 | 002/12112 | |
Daniele Alessandrini | 3 | 47/100 |

**MATH V3997 Supervised Individual Research.** *3 points*.

Prerequisites: the written permission of the faculty member who agrees to act as a supervisor, and the director of undergraduate studies' permission.

For specially selected mathematics majors, the opportunity to write a senior thesis on a problem in contemporary mathematics under the supervision of a faculty member.

**MATH V3998 Supervised Individual Research.** *3 points*.

Prerequisites: the written permission of the faculty member who agrees to act as a supervisor, and the director of undergraduate studies' permission.

For specially selected mathematics majors, the opportunity to write a senior thesis on a problem in contemporary mathematics under the supervision of a faculty member.

**MATH UN1003 College Algebra and Analytic Geometry.** *3 points*.

Prerequisites: score of 550 on the mathematics portion of the SAT completed within the last year or the appropriate grade on the General Studies Mathematics Placement Examination.

Columbia College students do not receive any credit for this course and must see their CSA advising dean. For students who wish to study calculus but do not know analytic geometry. Algebra review, graphs and functions, polynomial functions, rational functions, conic sections, systems of equations in two variables, exponential and logarithmic functions, trigonometric functions and trigonometric identities, applications of trigonometry, sequences, series, and limits.

Spring 2020: MATH UN1003 |
|||||

Course Number | Section/Call Number | Times/Location | Instructor | Points | Enrollment |
---|---|---|---|---|---|

MATH 1003 | 002/12023 | T Th 11:40am - 12:55pm 407 Mathematics Building |
Yier Lin | 3 | 10/30 |

MATH 1003 | 003/00593 | M W 6:10pm - 7:25pm 302 Barnard Hall |
Lindsay Piechnik | 3 | 26/36 |

Fall 2020: MATH UN1003 |
|||||

Course Number | Section/Call Number | Times/Location | Instructor | Points | Enrollment |

MATH 1003 | 001/11290 | M W 6:10pm - 7:25pm Room TBA |
Alexander Pieloch | 3 | 4/30 |

MATH 1003 | 002/11291 | T Th 2:40pm - 3:55pm Room TBA |
Mrudul Thatte | 3 | 6/30 |

**MATH GU4007 Analytic Number Theory.** *3 points*.

Prerequisites: MATH UN3007

A one semeser course covering the theory of modular forms, zeta functions, L -functions, and the Riemann hypothesis. Particular topics covered include the Riemann zeta function, the prime number theorem, Dirichlet characters, Dirichlet L-functions, Siegel zeros, prime number theorem for arithmetic progressions, SL (2, Z) and subgroups, quotients of the upper half-plane and cusps, modular forms, Fourier expansions of modular forms, Hecke operators, L-functions of modular forms.

Spring 2020: MATH GU4007 |
|||||

Course Number | Section/Call Number | Times/Location | Instructor | Points | Enrollment |
---|---|---|---|---|---|

MATH 4007 | 001/12113 | M W 2:40pm - 3:55pm 307 Mathematics Building |
Evan Warner | 3 | 4/20 |

**MATH GU4032 Fourier Analysis.** *3 points*.

Prerequisites: three terms of calculus and linear algebra or four terms of calculus.

Prerequisite: three terms of calculus and linear algebra or four terms of calculus. Fourier series and integrals, discrete analogues, inversion and Poisson summation formulae, convolution. Heisenberg uncertainty principle. Stress on the application of Fourier analysis to a wide range of disciplines.

Spring 2020: MATH GU4032 |
|||||

Course Number | Section/Call Number | Times/Location | Instructor | Points | Enrollment |
---|---|---|---|---|---|

MATH 4032 | 001/12115 | M W 11:40am - 12:55pm 520 Mathematics Building |
Peter Woit | 3 | 21/50 |

**MATH GU4041 INTRO MODERN ALGEBRA I.** *3 points*.

Prerequisites: MATH UN1102 and MATH UN1202 and MATH UN2010 or the equivalent

The second term of this course may not be taken without the first. Groups, homomorphisms, rings, ideals, fields, polynomials, field extensions, Galois theory.

Spring 2020: MATH GU4041 |
|||||

Course Number | Section/Call Number | Times/Location | Instructor | Points | Enrollment |
---|---|---|---|---|---|

MATH 4041 | 001/12116 | T Th 10:10am - 11:25am 520 Mathematics Building |
Michael Harris | 3 | 42/55 |

Fall 2020: MATH GU4041 |
|||||

Course Number | Section/Call Number | Times/Location | Instructor | Points | Enrollment |

MATH 4041 | 001/11487 | M W 2:40pm - 3:55pm Room TBA |
Robert Friedman | 3 | 87/110 |

**MATH GU4042 INTRO MODERN ALGEBRA II.** *3 points*.

Prerequisites: MATH UN1102 and MATH UN1202 and MATH UN2010 or the equivalent.

The second term of this course may not be taken without the first. Rings, homomorphisms, ideals, integral and Euclidean domains, the division algorithm, principal ideal and unique factorization domains, fields, algebraic and transcendental extensions, splitting fields, finite fields, Galois theory.

Spring 2020: MATH GU4042 |
|||||

Course Number | Section/Call Number | Times/Location | Instructor | Points | Enrollment |
---|---|---|---|---|---|

MATH 4042 | 001/12121 | T Th 1:10pm - 2:25pm 417 Mathematics Building |
Yihang Zhu | 3 | 41/50 |

Fall 2020: MATH GU4042 |
|||||

Course Number | Section/Call Number | Times/Location | Instructor | Points | Enrollment |

MATH 4042 | 001/11488 | M W 1:10pm - 2:25pm Room TBA |
Mikhail Khovanov | 3 | 16/35 |

**MATH GU4043 Algebraic Number Theory.** *3 points*.

Prerequisites: MATH GU4041 and MATH GU4042 or the equivalent

Algebraic number fields, unique factorization of ideals in the ring of algebraic integers in the field into prime ideals. Dirichlet unit theorem, finiteness of the class number, ramification. If time permits, p-adic numbers and Dedekind zeta function.

**MATH GU4044 Representations of Finite Groups.** *3 points*.

Prerequisites: MATH UN2010 and MATH GU4041 or the equivalent.

Finite groups acting on finite sets and finite dimensional vector spaces. Group characters. Relations with subgroups and factor groups. Arithmetic properties of character values. Applications to the theory of finite groups: Frobenius groups, Hall subgroups and solvable groups. Characters of the symmetric groups. Spherical functions on finite groups.

Fall 2020: MATH GU4044 |
|||||

Course Number | Section/Call Number | Times/Location | Instructor | Points | Enrollment |
---|---|---|---|---|---|

MATH 4044 | 001/11490 | T Th 1:10pm - 2:25pm Room TBA |
Chao Li | 3 | 10/19 |

**MATH GU4045 Algebraic Curves.** *3 points*.

Prerequisites: (MATH GU4041 and MATH GU4042) and MATH UN3007

Plane curves, affine and projective varieties, singularities, normalization, Riemann surfaces, divisors, linear systems, Riemann-Roch theorem.

Spring 2020: MATH GU4045 |
|||||

Course Number | Section/Call Number | Times/Location | Instructor | Points | Enrollment |
---|---|---|---|---|---|

MATH 4045 | 001/12122 | M W 4:10pm - 5:25pm 528 Mathematics Building |
Akash Sengupta | 3 | 9/20 |

**MATH W4046 Introduction to Category Theory.** *3 points*.

CC/GS: Partial Fulfillment of Science Requirement**Not offered during 2019-20 academic year.**

Prerequisites: *MATH W4041*.

Categories, functors, natural transformations, adjoint functors, limits and colimits, introduction to higher categories and diagrammatic methods in algebra.

**MATH GU4051 Topology.** *3 points*.

Prerequisites: (MATH UN1202 and MATH UN2010) and rudiments of group theory (e.g., MATH GU4041). MATH UN1208 or MATH GU4061 is recommended, but not required.

Metric spaces, continuity, compactness, quotient spaces. The fundamental group of topological space. Examples from knot theory and surfaces. Covering spaces.

Fall 2020: MATH GU4051 |
|||||

Course Number | Section/Call Number | Times/Location | Instructor | Points | Enrollment |
---|---|---|---|---|---|

MATH 4051 | 001/11491 | T Th 11:40am - 12:55pm Room TBA |
Stephen Miller | 3 | 38/64 |

**MATH GU4052 Introduction to Knot Theory.** *3 points*.

CC/GS: Partial Fulfillment of Science Requirement

Prerequisites: MATH GU4051 Topology and / or MATH GU4061 Introduction To Modern Analysis I (or equivalents). Recommended (can be taken concurrently): MATH UN2010 linear algebra, or equivalent.

The study of algebraic and geometric properties of knots in R^3, including but not limited to knot projections and Reidemeister's theorm, Seifert surfaces, braids, tangles, knot polynomials, fundamental group of knot complements. Depending on time and student interest, we will discuss more advanced topics like knot concordance, relationship to 3-manifold topology, other algebraic knot invariants.

**MATH GU4053 Introduction to Algebraic Topology.** *3 points*.

Prerequisites: MATH UN2010 and MATH GU4041 and MATH GU4051

The study of topological spaces from algebraic properties, including the essentials of homology and the fundamental group. The Brouwer fixed point theorem. The homology of surfaces. Covering spaces.

Spring 2020: MATH GU4053 |
|||||

Course Number | Section/Call Number | Times/Location | Instructor | Points | Enrollment |
---|---|---|---|---|---|

MATH 4053 | 001/12123 | T Th 2:40pm - 3:55pm 307 Mathematics Building |
Oleg Lazarev | 3 | 8/50 |

**MATH GU4061 INTRO MODERN ANALYSIS I.** *3 points*.

Prerequisites: MATH UN1202 or the equivalent, and MATH UN2010. The second term of this course may not be taken without the first.

Prerequisites: MATH UN1202 or the equivalent, and MATH UN2010. The second term of this course may not be taken without the first. Real numbers, metric spaces, elements of general topology, sequences and series, continuity, differentiation, integration, uniform convergence, Ascoli-Arzela theorem, Stone-Weierstrass theorem.

Spring 2020: MATH GU4061 |
|||||

Course Number | Section/Call Number | Times/Location | Instructor | Points | Enrollment |
---|---|---|---|---|---|

MATH 4061 | 001/12124 | M W 1:10pm - 2:25pm 417 Mathematics Building |
Hui Yu | 3 | 45/64 |

MATH 4061 | 002/12125 | M W 4:10pm - 5:25pm 417 Mathematics Building |
Hui Yu | 3 | 37/64 |

Fall 2020: MATH GU4061 |
|||||

Course Number | Section/Call Number | Times/Location | Instructor | Points | Enrollment |

MATH 4061 | 001/11494 | T Th 2:40pm - 3:55pm Room TBA |
Henri Roesch | 3 | 35/100 |

MATH 4061 | 002/11495 | T Th 4:10pm - 5:25pm Room TBA |
Henri Roesch | 3 | 19/100 |

**MATH GU4062 Introduction To Modern Analysis II.** *3 points*.

Prerequisites: MATH UN1202 or the equivalent, and MATH UN2010. The second term of this course may not be taken without the first.

Real numbers, metric spaces, elements of general topology. Continuous and differential functions. Implicit functions. Integration; change of variables. Function spaces.

Spring 2020: MATH GU4062 |
|||||

Course Number | Section/Call Number | Times/Location | Instructor | Points | Enrollment |
---|---|---|---|---|---|

MATH 4062 | 001/12126 | M W 1:10pm - 2:25pm 407 Mathematics Building |
Evgeni Dimitrov | 3 | 22/65 |

Fall 2020: MATH GU4062 |
|||||

Course Number | Section/Call Number | Times/Location | Instructor | Points | Enrollment |

MATH 4062 | 001/11498 | M W 4:10pm - 5:25pm Room TBA |
Hui Yu | 3 | 24/49 |

**MATH GU4065 Honors Complex Variables.** *3 points*.

Prerequisites: (MATH UN1207 and MATH UN1208) or MATH GU4061

A theoretical introduction to analytic functions. Holomorphic functions, harmonic functions, power series, Cauchy-Riemann equations, Cauchy's integral formula, poles, Laurent series, residue theorem. Other topics as time permits: elliptic functions, the gamma and zeta function, the Riemann mapping theorem, Riemann surfaces, Nevanlinna theory.

Fall 2020: MATH GU4065 |
|||||

Course Number | Section/Call Number | Times/Location | Instructor | Points | Enrollment |
---|---|---|---|---|---|

MATH 4065 | 001/11503 | T Th 10:10am - 11:25am Room TBA |
Julien Dubédat | 3 | 20/20 |

**MATH GU4071 Introduction to the Mathematics of Finance.** *3 points*.

CC/GS: Partial Fulfillment of Science Requirement

Prerequisites: MATH UN1202 and MATH UN3027 and STAT W4150 and SEIO W4150, or their equivalents.

The mathematics of finance, principally the problem of pricing of derivative securities, developed using only calculus and basic probability. Topics include mathematical models for financial instruments, Brownian motion, normal and lognormal distributions, the BlackûScholes formula, and binomial models.

**MATH GU4081 Introduction to Differentiable Manifolds.** *3 points*.

Prerequisites: (MATH GU4051 or MATH GU4061) and MATH UN2010

Concept of a differentiable manifold. Tangent spaces and vector fields. The inverse function theorem. Transversality and Sard's theorem. Intersection theory. Orientations. Poincare-Hopf theorem. Differential forms and Stokes' theorem.

Fall 2020: MATH GU4081 |
|||||

Course Number | Section/Call Number | Times/Location | Instructor | Points | Enrollment |
---|---|---|---|---|---|

MATH 4081 | 001/00119 | M W 10:10am - 11:25am Room TBA |
Dusa McDuff | 3 | 13/40 |

**MATH GU4155 Probability Theory.** *3 points*.

Prerequisites: MATH GU4061 or MATH UN3007

A rigorous introduction to the concepts and methods of mathematical probability starting with basic notions and making use of combinatorial and analytic techniques. Generating functions. Convergence in probability and in distribution. Discrete probability spaces, recurrence and transience of random walks. Infinite models, proof of the law of large numbers and the central limit theorem. Markov chains.

Spring 2020: MATH GU4155 |
|||||

Course Number | Section/Call Number | Times/Location | Instructor | Points | Enrollment |
---|---|---|---|---|---|

MATH 4155 | 001/12127 | T Th 4:10pm - 5:25pm 520 Mathematics Building |
Ioannis Karatzas | 3 | 24/55 |

**MATH GU4392 Quantum Mechanics: An Introduction for Mathematicians and Physicists II.** *3 points*.

**Not offered during 2019-20 academic year.**

*Prerequisites: MATH UN1202 or the equivalent, MATH UN2010 and MATH GU4391.* This course will focus on quantum mechanics, paying attention to both the underlying mathematical structures as well as their physical motivations and consequences. It is meant for undergraduates with no previous formal training in quantum theory. The measurement problem and issues of non-locality will be stressed.

## Cross-Listed Courses

### Computer Science

**COMS S3251 Computational Linear Algebra.** *3 points*.

**Not offered during 2019-20 academic year.**

Prerequisites: two terms of calculus.

Computational linear algebra, solution of linear systems, sparse linear systems, least squares, eigenvalue problems, and numerical solution of other multivariate problems as time permits.

**COMS W4203 Graph Theory.** *3 points*.

Lect: 3.

Prerequisites: (COMS W3203)

General introduction to graph theory. Isomorphism testing, algebraic specification, symmetries, spanning trees, traversability, planarity, drawings on higher-order surfaces, colorings, extremal graphs, random graphs, graphical measurement, directed graphs, Burnside-Polya counting, voltage graph theory.

**COMS W3203 Discrete Mathematics: Introduction to Combinatorics and Graph Theory.** *3 points*.

Lect: 3.

Prerequisites: Any introductory course in computer programming.

Logic and formal proofs, sequences and summation, mathematical induction, binomial coefficients, elements of finite probability, recurrence relations, equivalence relations and partial orderings, and topics in graph theory (including isomorphism, traversability, planarity, and colorings).

Spring 2020: COMS W3203 |
|||||

Course Number | Section/Call Number | Times/Location | Instructor | Points | Enrollment |
---|---|---|---|---|---|

COMS 3203 | 001/12619 | M W 10:10am - 11:25am 417 International Affairs Bldg |
Ansaf Salleb-Aouissi | 3 | 147/152 |

Fall 2020: COMS W3203 |
|||||

Course Number | Section/Call Number | Times/Location | Instructor | Points | Enrollment |

COMS 3203 | 001/11672 | T Th 10:10am - 11:25am Room TBA |
Ansaf Salleb-Aouissi | 3 | 148/150 |

COMS 3203 | 002/11673 | T Th 11:40am - 12:55pm Room TBA |
Ansaf Salleb-Aouissi | 3 | 150/150 |

### Industrial Engineering and Operations Research

**CSOR E4010 Graph Theory: A Combinatorial View.** *3 points*.

Lect: 3.**Not offered during 2019-20 academic year.**

Prerequisites: Linear Algebra, or instructor's permission.

Graph Theory is an important part of the theoretical basis of operations research. A good understanding of the basic fundamentals of graph theory is necessary in order to apply the theory successfully in the future. This is an introductory course in graph theory with emphasis on its combinatorial aspects. It covers basic definitions, and some fundamental concepts in graph theory and its applications. Topics include trees and forests graph coloring, connectivity, matching theory and others. This course will provide a solid foundation for students in the IEOR department, on which further courses may build.