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Instead of trying to give a comprehensive overview of the subject, I will
concentrate on explaining a few key concepts and their implications, notably
“Moser’s argument” (or the homotopy method) in Lecture 2, capacity in Lec-
ture 4 and Gromov’s proof of the nonsqueezing theorem in Lecture 5. The
first exhibits the flexibility of symplectic geometry while the latter two show its
rigidity. Quite a lot of time is spent on the linear theory since this is the basis
of everything else. The last lecture sketches the bare outlines of the theory of
J-holomorphic spheres, to give an introduction to a fascinating and powerful
technique.

Throughout the notation is consistent with that used in [MS1] and [MS2].
Readers may consult those books for more details on almost every topic men-
tioned here, as well as for a much fuller list of references.

I wish to thank Jenn Slimowitz for taking the notes and making useful
comments on an earlier version of this manuscript.

1 Lecture 1: Basics

Symplectic geometry is the geometry of a skew-symmetric form. Let M be a
manifold of dimension 2n. A symplectic form (or symplectic structure) on M
is a closed nondegenerate 2-form ω. Nondegeneracy means that ω(v, w) = 0 for
all w ∈ TM only when v = 0. Therefore the map

Iω : TpM → T ∗pM : v 7→ ι(v)ω = ω(v, ·)

is injective and hence an isomorphism. The basic example is

ω0 = dx1 ∧ dy1 + . . .+ dxn ∧ dyn

on R2n.
∗this article is published in IAS/Park City Math. Series vol 7, ed Eliashberg and Traynor,

AMS (1998)
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Here are some fundamental questions.
• Can one get a geometric understanding of the structure defined by a symplectic
form?
• Which manifolds admit symplectic forms?
• When are two symplectic manifolds (eg two open sets in (R2n, ω0)) symplec-
tomorphic?

Definition 1.1 A diffeomorphism φ : (M,ω) → (M ′ω′) is called a symplec-
tomorphism if φ∗(ω′) = ω. The group of all symplectomorphisms is written
Symp(M).

Existence of many symplectomorphisms

Given a function H : M → R – often called the energy function or Hamiltonian
– let XH be the vector field defined by

ι(XH)ω = dH.

(Observe that XH = (Iω)−1(dH) is well defined because of the nondegeneracy
of ω. Also, many authors put a minus sign in the above equation.) When M is
compact, XH integrates to a flow φH

t that preserves ω because

LXH
ω = ι(XH)dω + d(ι(XH)ω) = ddH = 0.

Here we have used both that ω is closed and that it is nondegenerate. The
calculation

dH(XH) = (ι(XH))ω(XH) = ω(XH , XH) = 0

shows that XH is tangent to the level sets of H. Thus the flow of φH
t preserves

the function H.

Example 1.2 With H : R2 → R given by H(x, y) = y and with ω = dx ∧ dy,
we get

XH =
∂

∂x
and φH

t (x, y) = (x+ t, y).

If H : R2n → R and ω = ω0, we get

XH =
∑

i

∂H

∂yi

∂

∂xi
− ∂H

∂xi

∂

∂yi
.

The solution curves (xi(t), yi(t)) = φt(x(0), y(0)) satisfy Hamilton’s equations

ẋi =
∂H

∂yi
, ẏi = −∂H

∂xi
.
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With H = 1
2

∑
x2

j + y2
j , the orbits of this action are circles. In complex coordi-

nates zj = xj + iyj we have

φH
t (z1, . . . , zn) = (e−itz1, . . . , e

−itzn).

Thus we get a circle action on R2n = Cn. The function H that generates it is
called the moment map of this action.

Exercise 1.3 Often it is useful to consider Hamiltonian functions that depend
on time: viz:

H : M × [0, 1] → R, H(p, t) = Ht(p).

Then one defines XHt as before, and gets a smooth family φH
t of symplectomor-

phisms with φH
0 = id which at time t are tangent to XHt :

d

dt
(φH

t (p)) = XHt(φ
H
t (p)), p ∈M, t ∈ [0, 1].

Such a family is called a Hamiltonian isotopy. Show that the set of all time-1
maps φH

1 forms a subgroup of Symp(M). This is called the group of Hamil-
tonian symplectomorphisms Ham(M). Its elements are also often called exact
symplectomorphisms.

Linear symplectic geometry

To get a better understanding of what is going on, let’s now look at what hap-
pens at a point. As we shall see, linear symplectic geometry contains a surprising
amount of structure. Moreover, most of this structure at a point corresponds
very clearly to nonlinear phenomena. One example of this is Darboux’s theo-
rem. We shall see in a minute that there is only one symplectic structure on a
given (finite-dimensional) vector space, up to isomorphism. Darboux’s theorem
says that, locally, there is only one symplectic form on a smooth manifold. In
other words, every symplectic form ω on M is locally symplectomorphic to the
standard form ω0 on R2n. One might think that this implies there is no inter-
esting local structure (just as if one were in the category of smooth manifolds.)
But this is false, since, as we shall see, the standard structure ω0 on R2n is itself
very interesting.

So let V be a vector space (over R) with a nondegenerate skew bilinear form
ω. Thus

ω(v, w) = −ω(w, v), ω(v, w) = 0 for all v ∈ V implies w = 0.

The basic example is R2n with the form ω0 considered as a bilinear form.
Given a subspace W define its symplectic orthogonal Wω by:

Wω = {v : ω(v, w) = 0 for all w ∈W}.
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Lemma 1.4 dimW + dimWω = dimV .

Proof: Check that the map

I : V →W ∗ : v 7→ ω(v, ·)|W

is surjective with kernel Wω. 2

A subspace W is said to be symplectic if ω|W is nondegenerate. It is easy to
check that:

Lemma 1.5 W is symplectic ⇐⇒W ∩Wω = {0} ⇐⇒ V ∼= W ⊕Wω.

Proof: Exercise. 2

Further we say that W is isotropic iff W ⊂ Wω and that W is Lagrangian
iff W = Wω. In the latter case dimW = n by Lemma 1.4.

Proposition 1.6 Every symplectic vector space is isomorphic to (R2n, ω0).

Proof: A basis u1, v1, . . . , un, vn of (V, ω) is said to be standard if, for all i, j,

ω(ui, uj) = ω(vi, vj) = 0, ω(ui, vj) = δij .

Clearly (R2n, ω0) posses such a basis. Further any linear map that takes one
such basis into another preserves the symplectic form. Hence we just have to
construct a standard basis for (V, ω).

To do this, start with any u1 6= 0. Choose v so that ω(u1, v) = λ 6= 0 and set
v1 = v/λ. Let W be the span of u1, v1. Then W is symplectic, so V = W ⊕Wω

by Lemma 1.5. By induction, we may assume that Wω has a standard basis
u2, v2, . . . , un, vn. It is easy to check that adding u1, v1 to this makes a standard
basis for (V, ω). 2

Exercise 1.7 (i) Show that if L is a Lagrangian subspace of the symplectic
vector space (V, ω), any basis u1, . . . , un for V can be extended to a standard
basis u1, v1, . . . , un, vn for (V, ω). (Hint: choose v1 ∈ Wω where W is the span
of u2, . . . , un.)
(ii) Show that (V, ω) is symplectomorphic to the space (L⊕ L∗, τ) where

τ((`, v∗), (`′, v′∗)) = v′∗(`)− v∗(`′).

The next exercise connects the linear theory with the Hamiltonian flows we
were considering earlier.

Exercise 1.8 (i) Check that every codimension 1 subspace W is coisotropic in
the sense that Wω ⊂ W . Note that Wω is 1-dimensional. For obvious reasons
its direction is called the null direction in W .
(ii) Given H : M → R let Q = H−1(c) be a regular level set. Show that
XH(p) ∈ (TpQ)ω for all p ∈ Q. Thus the direction of XH is determined by the
level set Q. (Its size is determined by H.)
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Exercise 1.9 Show that if ω is any symplectic form on a vector space of dimen-
sion 2n then the nth exterior power ωn does not vanish. Deduce that the nth
exterior power Ω = ωn of any symplectic form ω on a 2n-dimensional manifold
M is a volume form. Further every symplectomorphism of M preserves this
volume form.

The cotangent bundle

This is another basic example of a symplectic manifold. The cotangent bundle
TX carries a canonical 1-form λcan defined by

(λcan)(x,v∗)(w) = v∗(π∗(w)), for w ∈ T(x,v∗)(T ∗X),

where π : TX → X is the projection. (Here x is a point in X and v∗ ∈ T ∗xX.)
Then Ωcan = −dλcan is a symplectic form. Clearly the fibers of π : T ∗X → X
are Lagrangian with respect to Ωcan, as is the zero section. Moreover, it is not
hard to see that:

Lemma 1.10 Let σα : X → T ∗X be the section determined by the 1-form α
on X. Then σ∗α(λcan) = α. Hence the manifold σα(X) is Lagrangian iff α is
closed.

Exercise 1.11 (i) Take a function H on X and let H̃ = H ◦ π. Describe the
resulting flow on T ∗X.
(ii) Every diffeomorphism φ of X lifts to a diffeomorphism φ̃ of T ∗X by

φ̃(x, v∗) = (φ(x), (φ−1)∗v∗).

Show that φ̃∗(λcan) = λcan.

(iii) Let φt be the flow on X generated by a vector field Y . If φ̃t is the lift of
this flow to T ∗X show that the Hamiltonian H : T ∗X → R that generates this
flow has the form

H(x, v∗) = v∗(Y (x)).

Hint: use (ii) and write down the defining equation for Ỹ = XH in terms of
λcan.

2 Lecture 2: Moser’s argument

In this lecture I will show you a powerful argument due to Moser [M] which
exhibits the “flabbiness” or lack of local structure in symplectic geometry. Here
is the basic argument.
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Lemma 2.1 Suppose that ωt is a family of symplectic forms on a closed man-
ifold M whose time derivative is exact. Thus

ω̇t = dσt,

where σt is a smooth family of 1-forms. Then there is a smooth family of
diffeomorphisms φt with φ0 = id such that

φ∗t (ωt) = ω0.

Proof: We construct φt as the flow of a time-dependent vector field Xt. We
know

φ∗t (ωt) = ω ⇐⇒ d

dt
(φ∗tωt) = 0

⇐⇒ φ∗t (ω̇t + LXt
ωt) = 0

⇐⇒ ω̇t + ι(Xt)dωt + d(ι(Xt)ωt) = 0
⇐⇒ d(σt + ι(Xt)ωt) = 0.

This last equation will hold if σt + ι(Xt)ωt = 0. Observe that for any choice
of 1-forms σt the latter equation can always be solved for Xt because of the
nondegeneracy of the ωt. Therefore, reading this backwards, we see that we can
always find an Xt and hence a family φt that will do what we want. 2

Remark 2.2 (i) The condition ω̇t = dσt is equivalent to requiring that the
cohomology class [ωt] be constant. For if this class is constant the derivative ω̇t

is exact for each t so that for each t there is a form σt with ω̇t = dσt. Thus the
problem is to construct these σt so that they depend smoothly on t. This can be
accomplished in various ways (eg by using Hodge theory, or see Bott–Tu [BT].)

(ii) The previous lemma uses the fact that the forms ωt are closed and the
fact that the equation σt + ι(Xt)ωt can always be solved. This last is possible
only for nondegenerate 2-forms and for nonvanishing top dimensional forms. In
particular the argument does apply to volume forms. Note that this case is
very different from the symplectic case because there is never any problem in
constructing homotopies of volume forms. Indeed, the set of volume forms in
a given cohomology class is convex: if ω0, ω1 are volume forms with the same
orientation the forms (1− t)ω0 + tω1, 0 ≤ t ≤ 1 are also volume forms. Thus all
such forms are diffeomorphic. This is not true for symplectic forms. (Exercise:
find an example.)

The previous remarks show that one cannot get interesting new symplectic
structures by deforming a given structure within its cohomology class, ie:

Corollary 2.3 (Moser’s stability theorem) If ωt, 0 ≤ t ≤ 1, is a family of
cohomologous symplectic forms on a closed manifold M then there is an isotopy
φt with φ0 = id such that φ∗t (ωt) = ω0 for all t.
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Other corollaries apply Moser’s argument to noncompact manifolds M . In
this case, to be able to define the flow of the vector field Xt one must be very
careful to control its support. Since Xt = 0 ⇐⇒ σt = 0 the problem becomes
that of controlling the support of the forms σt. We illustrate what is involved
by proving Darboux’s theorem.

Theorem 2.1 (Darboux) Every symplectic form on M is locally diffeomor-
phic to the standard form ω0 on R2n.

Proof: Given a point p on M let ψ : nbhd(p) → R2n be a local chart that
takes p to the origin 0. We have to show that the form ω′ obtained by pushing ω
forward by ψ is diffeomorphic to the standard form ω0 near 0. By Proposition 1.6
we can choose ψ so that ω′ = ω0 at the point 0. Now consider the family

ωt = (1− t)ω0 + tω′.

Since ωt = ω0 at 0 by construction and nondegeneracy is an open condition,
there is some open ball U containing 0 on which all these forms are nondegen-
erate. Observe that ω̇t = ω′ − ω0. Since U is contractible there is a 1-form σ
such that dσ = ω′ − ω0. Moreover, by subtracting the constant form σ(0) we
can arrange that σ = 0 at the point 0. Thus the corresponding family of vector
fields Xt vanishes at 0. Let φt be the partially defined flow of Xt. Since 0 is a
fixed point, it is easy to see that there is a very small neighborhood V of 0 such
that the orbits φt(p), 0 ≤ t ≤ 1, of the points p in V remain inside U . Thus the
φt are defined on V and φ∗1(ω

′) = ω0. 2

For another proof of Darboux’s theorem (together with much else) see Arnold
[A]. The next applications apply this idea to neighborhoods of submanifolds of
M . The basic proposition is:

Proposition 2.4 Let ω0, ω1 be two symplectic forms on M whose restrictions
to the full tangent bundle of M along some submanifold Q of M agree: ie

ω0|TpM = ω1|TpM for p ∈ Q.

Then there is a diffeomorphism φ of M such that

φ(p) = p, for p ∈ Q, φ∗(ω1) = ω0 near Q.

Proof: Again look at the forms ωt = (1 − t)ω0 + tω1. As before these are
nondegenerate in some neighborhood of Q. Moreover

ω̇t = ω1 − ω0

is exact near Q. If we find a 1-form σ that vanishes at all points of Q and is
such that dσ = ω1−ω0, then the corresponding vector fields Xt will also vanish
along Q and will integrate to give the required diffeomorphisms φt near Q. Such
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a form σ can be constructed by suitably adapting the usual proof of Poincaré’s
lemma: see [BT], for example. 2

We can get better results by considering special submanifolds Q. Consider
for example a symplectic submanifold Q of (M,ω).1 Then by Lemma 1.5 the
normal bundle νQ = TM/TQ of Q may be identified with the symplectic or-
thogonal (TQ)ω to TQ. Moreover ω restricts to give a symplectic structure
on νQ: this means that each fiber has a natural symplectic structure that is
preserved by the transition functions of the bundle. (See Lecture 3.)

Corollary 2.5 (Symplectic neighborhood theorem) If ω0, ω1 are symplec-
tic forms on M that restrict to the same symplectic form ωQ on the submanifold
Q, then there is a diffeomorphism φ of M that fixes the points of Q and is such
that φ∗(ω1) = ω0 near Q provided that ω0 and ω1 induce isomorphic symplectic
structures on the normal bundle νQ.

Proof: The hypothesis implies that there is a linear isomorphism

L : TM |Q → TM |Q

that is the identity on the subbundle TQ and is such that L∗(ω1) = ω0. It is
not hard to see that L may be realised by a diffeomorphism ψ of M that fixes
the points of Q. In other words there is a diffeomorphism with dψp = Lp at
each point of Q. Then

ω0|TpM = ψ∗ω1|TpM , p ∈ Q,

and so the result follows from Proposition 2.4. 2

We will see in the next lecture that giving an isomorphism class of symplectic
structures on a bundle is equivalent to giving an isomorphism class of complex
structures on it. Hence the normal data needed to make ω0 and ω1 agree near
Q is quite weak. For example, if Q has codimension 2, all we need to check is
that the two forms induce the same orientation on the normal bundle since the
Euler class (or first Chern class) of νQ is determined up to sign by its topology.

Another important case is when Q is Lagrangian. In this case one can check
that the normal bundle νQ is canonically isomorphic to the dual bundle TQ∗.
Moreover this dual bundle is also Lagrangian. (Cf Exercise 1.7.) Thus when Q is
Lagrangian with respect to both ω0 and ω1 there always is a linear isomorphism

L : TM |Q → TM |Q

that is the identity on the subbundle TQ and is such that L∗(ω1) = ω0. More-
over, just as in the case of Darboux’s theorem there is a standard model for Q,
namely the zero section in the cotangent bundle (T ∗Q,Ωcan). Thus we have:

1A submanifold Q of M is called symplectic if ω restricts to a symplectic form on Q, or,
equivalently, if all its tangent spaces TpQ, p ∈ Q, are symplectic subspaces. Similarly, Q is
Lagrangian if ω|Q ≡ 0 and dim Q = n.
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Corollary 2.6 (Weinstein’s Lagrangian neighborhood theorem) If Q is
a Lagrangian submanifold of (M,ω) there is a neighborhood of Q that is sym-
plectomorphic to a neighborhood of the zero section in the cotangent bundle
(T ∗Q,Ωcan).

Exercise 2.7 Given any two diffeomorphic closed smooth domains U, V in Rn

that have the same total volume, show that there is a diffeomorphism φ : U → V
that preserves volume. Hint: first choose any diffeomorphism ψ : U → V and
look at the forms ω0, ω1 = ψ∗(ω0) on U . Adjust ψ by hand near the boundary
∂U so that ω0 = ω1 at all points on ∂U . Then use a Moser type argument to
make the forms agree in the interior.

The last important result of this kind is the symplectic isotopy extension
theorem due to Banyaga. The proof is left as an exercise.

Proposition 2.8 (Isotopy extension) Let Q be a compact submanifold of
(M,ω) and suppose that φt : M → M is a family of diffeomorphisms of M
starting at φ0 = id such that φ∗t (ω) = ω near Q. Then, if for every relative
cycle Z ∈ H2(M,Q) ∫

Z

φ∗t (ω) =
∫

Z

ω,

there is a family of symplectic diffeomorphisms ψt and a neighborhood U of Q
such that ψt(p) = φt(p) for all p ∈ U .

3 Lecture 3: The linear theory

We will consider the vector space R2n with its standard symplectic form ω0.
This may be written in vector notation as

ω0(v, w) = wTJ0v,

where wT is the transpose of the column vector w and J0 is the block diagonal
matrix

J0 = diag
((

0 −1
1 0

)
, . . . ,

(
0 −1
1 0

))
.

The symplectic linear group Sp(2n,R) (sometimes written Sp(2n)) consists of
all matrices A such that

ω0(Av,Aw) = ω0(v, w),

or equivalently of all A such that

ATJ0A = J0.
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Clearly Sp(2n,R) is a group. The identity JT
0 = −J0 = J−1

0 gives rise to
interesting algebraic properties of this group. Firstly, it is closed under trans-
pose, and secondly every symplectic matrix is conjugate to its inverse transpose
(A−1)T . The former statement is proved by inverting the identity

(A−1)TJ0A
−1 = J0,

and the second by multiplying the defining equation ATJ0A = J0 on the left by
(J0)−1(AT )−1.

Exercise 3.1 Show that if λ ∈ C is an the eigenvalue of a symplectic matrix
A then so are 1/λ, λ̄, 1/λ̄. What happens when λ ∈ R, or |λ| = 1?

Recall that we are identifying Cn with R2n by setting zj = xj + iyj . Under
this identification, J0 corresponds to multiplication by i. Hence we may consider
GL(n,C) to be the subgroup of GL(2n,R) consisting of all matrices A such that
AJ0 = J0A.

Exercise 3.2 Given an n × n matrix A with complex entries, find a formula
for the corresponding real 2n× 2n matrix.

Lemma 3.3

Sp(2n,R) ∩O(2n) = Sp(2n,R) ∩GL(n,C) = O(2n) ∩GL(n,C) = U(n).

Proof: Exercise. 2

Our first main result is that U(n) is a maximal compact subgroup of Sp(2n)
and hence, by the general theory of Lie groups, the quotient space Sp(2n)/U(n)
is contractible. The first statement above means that any compact subgroup G
of Sp(2n) is conjugate to a subgroup of U(n). We won’t prove this here since
we will not use it. However, we will give an independent proof of the second.

To begin, recall the usual proof that GL(n,R)/O(n) is contractible. One
looks at the polar decomposition

A = (AAT )
1
2O

of A. Here P = AAT is a symmetric, positive definite2 matrix and hence
diagonalises with real positive eigenvalues. In other words P may be written
XΛX−1 where Λ is a diagonal matrix with positive entries. One can therefore
define an arbitrary real power Pα of P by

Pα = XΛαX−1.

2Usually a positive definite matrix is assumed to be symmetric (ie P = P T ). However,
in symplectic goemetry one does come across matrices that satisfy the positivity condition
vT Pv > 0 for all nonzero v but that are not symmetric. Hence it is better to mention the
symmetry explicitly.
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It is easy to check that
O = (AAT )−

1
2A

is orthogonal. Hence one can define a deformation retraction of GL(2n,R) onto
O(2n) by

A 7→ (AAT )
1−t
2 O, 0 ≤ t ≤ 1.

The claim is that this argument carries over to the symplectic context. To see
this we need to show:

Lemma 3.4 If P ∈ Sp(2n) is positive and symmetric then all its powers Pα,
α ∈ R are also symplectic.

Proof: Let Vλ be the eigenspace of P corresponding to the eigenvalue λ. Then,
if vλ ∈ Vλ, vλ′ ∈ Vλ′ ,

ω0(vλ, vλ′) = ω0(Pvλ, Pvλ′) = ω0(λvλ, λ
′vλ′) = λλ′ω0(vλ, vλ′).

Hence ω0(vλ, vλ′) = 0 unless λ′ = 1/λ. In other words the eigenspaces Vλ, Vλ′

are symplectically orthogonal unless λ′ = 1/λ. To check that Pα is symplectic
we just need to know that

ω0(Pαvλ, P
αvλ′) = ω0(vλ, vλ′),

for all eigenvectors vλ, vλ′ . But this holds since

ω0(Pαvλ, P
αvλ′) = ω0(λαvλ, (λ′)αvλ′) = (λλ′)αω0(vλ, vλ′) = ω0(vλ, vλ′).

(Observe that everything vanishes when λλ′ 6= 1!) 2

Thus the argument given above in the real context extends to the symplectic
context, and we have:

Proposition 3.5 The subgroup U(n) is a deformation retract of Sp(2n).

ω-compatible almost complex structures

An almost complex structure on a vector space V is a linear automorphism
J : V → V with J2 equal to −1l. Thus one can define an action of C on V by

(a+ ib)v = a+ Jb,

so that (V, J) is a complex vector space. If V also has a symplectic form ω we
say that ω and J are compatible if for all nonzero v, w,

ω(Jv, Jw) = ω(v, w), ω(v, Jv) > 0.

The basic example is the pair (ω0, J0) on R2n.
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Any such pair (J, ω) defines a corresponding metric (inner product) gJ by

gJ(v, w) = ω(v, Jw).

This is symmetric because

gJ(w, v) = ω(w, Jv) = ω(Jw, J2v) = ω(Jw,−v) = ω(v, Jw) = gJ(v, w).

Exercise 3.6 Show that J is ω-compatible iff there is a standard basis of the
form

u1, v1 = Ju1, . . . , un, vn = Jun.

Deduce that there is a linear symplectomorphism Φ : (R2n, ω0) → (V, ω) such
that J = ΦJ0Φ−1.

Proposition 3.7 The space of ω-compatible almost complex structures J on V
is contractible.

Proof: Without loss of generality we may suppose that (V, ω) is standard
Euclidean space (R2n, ω0). Clearly, Sp(2n) acts on the space J (ω0) of ω0-
compatible almost complex structures on R2n by

A · J = AJA−1.

The preceding exercise shows that this action is transitive, since every J may
be written as J = AJ0A

−1 and so is in the orbit of J0. The kernel of the action
consists of elements that commute with J0, in other words of unitary trans-
formations. (See Lemma 3.3.) Thus J (ω0) is isomorphic to the homogeneous
space Sp(2n)/U(n) and so is contractible by Proposition 3.5. 2

Exercise 3.8 Define the form ωB by

ωB(v, w) = wTBJ0v.

Under what conditions on B is ωB compatible with J0? Deduce that for each
fixed almost complex structure J on V the space of compatible ω is contractible.

Vector bundles

A (real) 2n-dimensional vector bundle π : E → B is said to be symplectic if it
has an atlas of local trivializations τα : π−1Uα → R2n × Uα such that for all
p ∈ Uα ∩ Uβ the corresponding transition map

φα,β(p) = τα ◦ (τβ)−1 : R2n × p→ R2n × p

is a linear symplectomorphism. Using a parametized version of Proposition 1.6,
one can easily show that this is equivalent to requiring that there is a bilinear
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skew form σ on E that is nondegenerate on each fiber. For, given such σ, one
can use Proposition 1.6 to choose the trivializations τα so that at each point
p ∈ B they pull back the standard form on R2n × p to the given form σ(p).
Then the transition maps have to be symplectic. Conversely, if the transition
maps are symplectic the pull backs of the standard form by the τα agree on the
overlaps to give a well-defined global form σ.

A σ-compatible almost complex structure J on E is an automorphism of E
that at each point p ∈ B is a σ(p)-compatible almost complex structure on the
fiber.

Proposition 3.9 Every symplectic vector bundle (E, σ) admits a contractible
family of compatible almost complex structures, and hence gives rise to a com-
plex structure on E that is unique up to isomorphism. Conversely, any com-
plex vector bundle admits a contractible family of compatible symplectic forms,
and hence has a symplectic structure that is unique up to isomorphism. Thus
classifying isomorphism classes of symplectic bundles is the same as classifying
isomorphism classes of complex bundles.

Proof: (Sketch) One way of proving the first statement is to note that the
space of compatible almost complex structures on E forms a fiber bundle over
B that, by Proposition 3.7, has contractible fibers. Another way is to start from
the contractible space of inner products on E and to show that each such inner
product gives rise to a unique almost complex structure. (The details of this
second argument can be found in 2.5,6 of [MS2].) The second statement follows
by similar arguments, using Exercise 3.8. 2

Clearly the tangent bundle TM of every symplectic manifold (M,ω) is a
symplectic vector bundle with symplectic structure given by ω. The previous
proposition shows that TM has a well-defined complex structure, and so, in
particular, has Chern classes ci(TM). The first Chern class c1(TM) ∈ H2(M,Z)
is a particularly useful class as it enters into the dimension formula for moduli
spaces of J-holomorphic curves. (See Lecture 5.)

The Lagrangian Grassmannian

Another interesting piece of linear structure concerns the space L(n) of all La-
grangian subspaces of a 2n-dimensional symplectic vector space (V, ω). This is
also known as the Lagrangian Grassmannian. Here we will consider the space
of unoriented Lagrangian subspaces, but it is easy to adapt our remarks to the
oriented case.

Lemma 3.10 Let J be any ω-compatible almost complex structure on the sym-
plectic vector space (V, ω). Then the subspace L ⊂ V is Lagrangian if and only
if there is a standard basis u1, v1, . . . , un, vn, for (V, ω) such that u1, . . . , un span
L and vj = Juj for all j.
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Proof: Let gJ be the associated metric and choose a gJ -orthonormal basis for
L. Then

ω(ui, Juj) = −gJ(ui, uj) = δij .

Hence we get a standard basis by setting vj = Juj for all j. The converse is
clear. 2

Corollary 3.11 L(n) ∼= U(n)/O(n).

Proof: We may take (V, ω, J) = (R2n, ω0, J0). Let L0 be the Lagrangian
spanned by the vectors ∂

∂x1
, . . . , ∂

∂xn
. The previous lemma shows that every La-

grangian subspace L is the image A(L0) of L0 under the unitary transformation
A that takes ∂

∂xj
to uj and ∂

∂yj
to vj . Moreover, A(L0) = L0 exactly when A

belongs to the orthogonal subgroup O(n) ⊂ U(n). 2

Exercise 3.12 Show that the group Sp(2n) acts transitively on pairs of transver-
sally intersecting Lagrangians.

Lemma 3.13 π1(L(n)) = Z.

Proof: The long exact homotopy sequence of the fibration O(n) → U(n) →
L(n) contains the terms

π1(O(n)) → π1(U(n)) → π1(L(n)) → π0(O(n)) = Z/2Z.

It is easy to check that the map

U(n) → S1 : A 7→ det(A)

induces an isomorphism on π1 (where det denotes the determinant over C.)
On the other hand π1(O(n)) is generated by a loop in O(2) and the inclusion
O(2) ↪→ U(2) takes its image in SU(2). Hence the map π1(O(n)) → π1(U(n)) is
trivial. 2

It is not hard to check that a generating loop of π1(L(n) is

t 7→ (eπitR)⊕R⊕ · ⊕R ⊂ Cn, 0 ≤ t ≤ 1.

The Maslov index

There are several ways to use the structure of the Lagrangian Grassman-
nian to get invariants. Typically the resulting invariants are called the “Maslov
index”. Here is one way that is relevant when considering the Lagrangian inter-
section problem. Suppose we are given two Lagrangian submanifolds Q0, Q1 in
(M,ω) that intersect transversally. For example Q0 might be the zero section
of the cotangent bundle T ∗Q and Q1 might be the graph of an exact 1-form df
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with nondegenerate zeros. In this case one can assign an index to each transver-
sal intersection point x ∈ Q0 ∩ Q1 by using the usual Morse index for critical
points of the function f . Although this is not possible in the general situation,
we will now explain how it is possible to define a relative index of pairs x+, x−
of intersection points. If one has chosen a homotopy class of connecting trajec-
tories u, this index takes values in Z. Here, a connecting trajectory means a
map u : D2 →M such that

u(1) = x+, u(−1) = x−,

u(eπit) ∈ Q0, 0 ≤ t ≤ 1,
u(eπit) ∈ Q1, 1 ≤ t ≤ 2.

Let us first see how to use this data to define a closed loop L(t), 0 ≤ t ≤ 4,
in L(n). Note that u∗(TM) is a symplectic bundle over the disc and so is
symplectically trivial. Choose a trivialization φ : u∗(TM) → D2 ×R2n. Then,
define

L(t) =
{
φ(u∗(Tu(eπit)Q0)), 0 ≤ t ≤ 1,
φ(u∗(Tu(eπit)Q1)), 2 ≤ t ≤ 3.

For t ∈ [1, 2] choose any path in L(n) from L(1) to L(2). To complete the loop,
observe that by Exercise 3.12 there is A ∈ Sp(n) such that

A(L(0)) = L(1), A(L(3)) = L(2).

Therefore, we may set

L(3 + s) = A(L(2− s)), 0 ≤ s ≤ 1.

The Maslov index µu(x−, x+) is now defined to be the element in π1(L(n) ∼= Z
represented by this path.

Exercise 3.14 Check that this index is independent of choices.

4 Lecture 4: The Nonsqueezing theorem

In Lecture 2, I explained various results that showed how flexible symplecto-
morphisms are and how little local structure a symplectic manifold has. Now
I want to show you the phenomenon of symplectic rigidity that is encapsulated
in Gromov’s nonsqueezing theorem [G]. We will consider the cylinder

Z(r) = B2(r)×R2n−2 = {(x, y) ∈ R2n : x2
1 + y2

1 ≤ r}

with the restriction of the usual symplectic form ω0.

Theorem 4.1 (Gromov) If there is a symplectomorphism that maps the the
unit ball B2n(1) in (R2n, ω0) into the cylinder Z(r) then r ≥ 1.
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This deceptively simple result is, as we shall see, enough to characterise
symplectomorphisms among all diffeomorphisms. It clearly shows that sym-
plectomorphisms are different from volume-preserving diffeomorphisms since it
is easy to construct a volume-preserving diffeomorphism that squeezes the unit
ball into an arbitrarily thin cylinder. We will begin discussing the proof at the
end of this lecture. For now, let’s look at its implications.

The clearest way to understand the force of Theorem 4.1 is to use the
Ekeland–Hofer idea of capacity. A symplectic capacity is a function c that as-
signs an element in [0,∞] to each symplectic manifold of dimension 2n and
satisfies the following axioms:

(i) (monotonicity) if there is a symplectic embedding φ : (U, ω) → (U ′, ω′) then
c(U, ω) ≤ c(U ′, ω′).
(ii) (conformal invariance) c(U, λω) = λ2c(U, ω).
(iii) (nontriviality)

0 < c(B2n(1), ω0) = c(Z(1), ω0) <∞.

It is the last property c(Z(1), ω0) < ∞ that implies that capacity is an
essentially 2-dimensional invariant, for example that it cannot be a power of the
total volume. Sometimes one considers capacities that satisfy a less stringent
version of (iii): namely
(iii′)

0 < c(B2n(1), ω0), c(Z(1), ω0) <∞.

However, below we will use the strong form (iii).
The interesting question is: do symplectic capacities exist? A moment’s

reflection shows that the fact that they do is essentially equivalent to the non-
squeezing theorem. Let us define the Gromov capacity cG by

cG(U, ω) = sup{πr2 : B2n(r) embeds symplectically in U}.

Then cG clearly satisfies the conditions (i), (ii), and also cG(B2n(r)) = πr2. The
only difficult thing to check is that cG(Z(1)) <∞, but in fact

cG(Z(r)) = πr2

by the nonsqueezing theorem. Thus cG is a capacity. There are now several
other known capacities, (cf work by Ekeland–Hofer [EH], Hofer–Zehnder [HZ],
Viterbo [V]) mostly defined by looking at properties of the periodic flows of
certain Hamiltonian functions H that are associated to U .

The main result is

Theorem 4.2 (Ekeland–Hofer) A (local) orientation-preserving diffeomor-
phism φ of (R2n, ω0) is symplectic iff it preserves the capacity of all open subsets
of R2n, ie iff there is a capacity c such that c(φ(U)) = c(U) for all open U .
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The proof is based on the corresponding result at the linear level.

Proposition 4.1 A linear map L that preserves the capacity of ellipsoids is
either symplectic or antisymplectic, ie L∗(ω0) = ±ω0.

Proof: If L is neither symplectic nor antisymplectic the same can be said of
its transpose LT . Therefore there are vectors v, w so that

ω0(v, w) 6= ±ω0(LT v, LTw).

By perturbing v, w and using the openness of the above condition we can suppose
that both ω0(v, w) and ω0(LT v, LTw) are nonzero. Then, replacing LT by its
inverse if necessary, we can arrange that

0 < λ2 = |ω0(LT v, LTw)| < ω0(v, w) = 1.

Now construct two standard bases of R2n, the first starting as

u1 = v, v1 = w, u2, . . . ,

and the second starting as

u′1 =
LT v

λ
, v′1 = ±L

Tw

λ
, u′2, . . . .

Let A, resp A′, be the symplectic linear map that takes the standard basis
e1, e2, e3, . . . of R2n to u1, v1, u2, . . ., resp u′1, v

′
1, u

′
2, . . .. Then, setting C =

(A′)−1LTA, we have
C(e1) = λe1, C(e2) = λe2.

Thus the matrices for C and CT have the form

C =


λ 0 ∗ . . . ∗
0 λ ∗ . . . ∗
0 0 ∗ . . . ∗
...

...
...

...
...

0 0 ∗ . . . ∗

 , CT =


λ 0 0 . . . 0
0 λ 0 . . . 0
∗ ∗ ∗ . . . ∗
...

...
...

...
...

∗ ∗ . . . ∗

 .

It is now easy to check that CT maps the unit ball into the cylinder Z(λ).
But because A,L and A′ preserve capacity, so does CT = ATL(A′T )−1. This
contradiction proves the result. Note that we have only needed the fact that
CT preserves the capacity of the unit ball. Hence we only need to know that L
preserves the capacity of all sets that are images of the ball by symplectic linear
maps, ie the ellipsoids. 2

Proof of Theorem 4.2 We want to show that the derivative dφp of φ at
every point p in its domain is symplectic. By pre- and post-composing with
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suitable translations, it is easy to see that it suffices to consider the case when
p = 0 and φ(0) = 0. Then the derivative dφ0 is the limit in the compact open
topology of the diffeomorphisms φt given by

φt(v) =
φ(tv)
t

.

Because φ preserves capacity, and capacity behaves well under rescaling (see
condition (ii)), the diffeomorphisms φt also preserve capacity. Moreover, by the
exercise below, the capacity of convex sets is continuous with respect to the
Hausdorff topology on sets. Thus the uniform limit dφ0 of the φt preserves
capacity and so must be either symplectic or anti-symplectic.

To complete the proof, we must show that dφ0 is symplectic rather than
anti-symplectic. If n is odd this follows immediately from the fact that dφ0

preserves orientation. If n is even, repeat the previous argument replacing φ by
idR2 × φ. 2

Exercise 4.2 Recall that the Hausdorff distance d(U, V ) between two subsets
U, V of R2n is defined to be

d(U, V ) = max
x∈U

(
min
y∈V

‖x− y‖
)

+ max
y∈V

(
min
x∈U

‖x− y‖
)
.

Suppose that U is a convex set containing the origin. Show that for all ε > 0
there is δ > 0 such that

(1− ε)U ⊂ V ⊂ (1 + ε)U, whenever d(U, V ) < δ.

Using this, prove the claim in the previous proof that dφ0 preserves capacity.

Corollary 4.3 (Eliashberg, Ekeland–Hofer) The group Symp(M,ω) is C0-
closed in the group of all diffeomorphisms.

Proof: We must show that if φn is a sequence of symplectomorphisms that
converge uniformly to a diffeomorphism φ0 then φ0 is itself symplectic. But φ0

preserves the capacity of ellipsoids because capacity is continuous with respect
to the Hausdorff topology on convex sets. Hence result. 2

Note that these results give us a way of defining symplectic homeomorphisms.
In fact, there are two possibly different definitions. One says that a (local) home-
omorphism of R2n is symplectic if it preserves the capacity of all open sets, the
other that it is symplectic if it preserves the capacity of all sufficiently small
ellipsoids. Very little is known about the properties of such homeomorphisms.
In particular, it is unknown whether these two definitions agree and the extent
to which they depend on the particular choice of capacity.
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Theorem 4.2 makes clear that symplectic capacity is the basic symplectic
invariant from which all others are derived. The fact that capacity is C0-
continuous shows the robustness of the property of being symplectic, and is
really the reason why there is an interesting theory of symplectic topology.
There is much recent work that develops the ideas presented here. Here is a
short list of key references: Floer–Hofer [FH] on the theory of symplectic homol-
ogy, Cieliebak–Floer–Hofer–Wysocki [CFHW] on its appplications, Hofer [H]
and Lalonde–McDuff [LM] on the Hofer norm on the group Ham(M,ω), and
Polterovich [P] on its applications.

There are now many known proofs of the nonsqueezing theorem that are
based on the different notions of capacity that have been developed: see for
example Ekeland–Hofer [EH] and Viterbo [V]. We shall follow the original proof
of Gromov [G] that uses J-holomorphic curves.

Preliminaries on J-holomorphic curves

A J-holomorphic curve (of genus 0) in an almost complex manifold (M,J) is a
map

u : (S2, j) → (M,J) : J ◦ du = du ◦ j,

where j is the usual almost complex structure on S2. This equation may be
rewritten as

∂Ju =
1
2
(du+ J ◦ du ◦ j) = 0.

In local holomorphic coordinates z = s+ it on S2, j acts by j( ∂
∂s ) = ∂

∂t and so
this translates to the pair of equations:

∂u

∂s
+ J(u)

∂u

∂t
= 0,

∂u

∂t
− J(u)

∂u

∂s
= 0.

Note that the second of these follows from the first by multiplying by J . Fur-
ther, if J were constant in local coordinates on M (which is equivalent to re-
quiring that J be integrable) these would reduce to the usual Cauchy–Riemann
equations. As it is, these are quasi-linear equations that agree with the Cauchy–
Riemann equations up to terms of order zero. Hence they are elliptic.

There is one very important point about J-holomorphic curves in the case
when J is compatible with a symplectic form ω. We then have an associated
metric gJ and we find (in obvious but rather inexact notation)∫

S2
u∗(ω) =

∫
S2
ω(
∂u

∂s
,
∂u

∂t
)

=
∫

S2
ω(
∂u

∂s
, J
∂u

∂s
)

=
∫

S2
gJ(

∂u

∂s
,
∂u

∂s
) ds dt
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=
1
2

∫
S2

(∣∣∣∣∂u∂s
∣∣∣∣2 +

∣∣∣∣∂u∂t
∣∣∣∣2
)
ds dt

= gJ -area of Imu.

Thus the gJ -area of a J-holomorphic curve is determined entirely by the ho-
mology class A that it represents. Note that ω(A) is always strictly positive
unless A = 0: indeed the restriction of ω to a J-holomorphic curve is nonde-
generate at all nonsingular points. Further the next exercise implies that such
curves are gJ -minimal surfaces. It is possible to develop much of the theory
of J-holomorphic curves using this fact. (This is Gromov’s original approach.
More details can be found in some of the articles in Audin–Lafontaine [AL].) In
the next lecture we will sketch the outlines of a rather different approach using
standard elliptic analysis.

Exercise 4.4 Let (V, ωJ) be a symplectic vector space with compatible almost
complex structure J and associated inner product gJ . Given two vectors v, w
denote by P (v, w) the parallelogram they span. Show that

ω(v, w) ≤ gJ -area of P (v, w)

with equality if and only if w = Jv. Deduce that J-hol curves in (M,ω, J) are
gJ -minimal surfaces.

5 Lecture 5

Sketch of the proof of the nonsqueezing theorem.

Suppose that φ : B2n(1) → Z(r) is a symplectic embedding. Its image lies in
some compact subset B2(r) × K of Z(r) that can be considered as a subset
of the compact manifold (S2 × T 2n−2,Ω), where Ω is the sum σ ⊕ κω0 of a
symplectic form σ on S2 with total area πr2 + ε and a suitable multiple of the
standard form ω0 on T 2n−2. Let J0 be the usual almost complex structure on
R2n and let J be an Ω-compatible almost complex structure on S2 × T 2n−2

that restricts to φ∗(J0) on the image of the ball. (It is easy to construct such J
using the methods of proof of Proposition 3.9.) As we will see below, the theory
of J-holomorphic curves ensures that there is at least one J-holomorphic curve
through each point of S2 × T 2n−2 in the class A = [S2 × pt]. Let C be such a
curve through the image φ(0) of the origin, and let S be the component of the
inverse image φ−1(C) that goes through the origin. Then S is a proper3 J0-
holomorphic curve in the ball B2n(1) through 0. Since J0 is the usual complex
structure, this means that S is a g0-minimal surface (where g0 is the usual metric

3This means that the intersection of S with any compact subset of the ball is compact.
Thus it goes all the way out to the boundary.
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on R2n.) But it is well-known that the proper surface of smallest area through
the center of a ball of radius 1 is a flat disc with area π. Hence

π ≤ g0-area of S =
∫

S

ω0 =
∫

φ(S)

Ω <

∫
C

Ω =
∫

S2×pt

Ω = πr2 + ε.

Since this is true for all ε > 0 we must have r ≥ 1. 2

What we have used here from the theory of J-holomorphic curves is the
existence of a curve in class A = [S2 × pt] through an arbitrary point in S2 ×
T 2n−2. It is easy to check that when J equals the product almost complex
structure Jsplit there is exactly one such curve through every point. For in this
case the two projections are holomorphic so that every Jsplit-holomorphic curve
in S2 ×R2n−2 is the product of curves in each factor. But the curve in T 2n−2

represents the zero homology class and so must be constant. Now, the basic
theory of J-holomorphic curves is really a deformation theory: if you know that
curves exist for one J you can often prove they exist for all other J .4 That
is exactly what we need here. Here is an outline of how this works. For more
details see [MS1] as well as the Park City lectures by Salamon.

Fredholm theory

Let M(A,J ) be the space of all pairs (u, J), where u : (S2, j) → (M,J) is
J-holomorphic , u∗([S2]) = A ∈ H2(M), and J ∈ J (ω). One shows that a
suitable completion of M(A,J ) is a Banach manifold and that the projection

π : M(A,J ) → J

is Fredholm of index
2(c1(A) + n),

where c1 = c1(TM, J). In this situation one can apply an infinite dimensional
version of Sard’s theorem (due to Smale) that states that there is a set Jreg of
second category in J consisting of regular values of π. Moreover by the implicit
function theorem for Banach manifolds the inverse image of a regular value is
a smooth manifold of dimension equal to the index of the Fredholm operator.
Thus one finds that for almost every J

π−1(J) = M(A, J)

is a smooth manifold of dimension 2(c1(A) + n). Moreover, by a transversality
theorem for paths, given any two elements J0, J1 ∈ Jreg there is a path Jt, 0 ≤
t ≤ 1, such that the union

W = ∪tM(A, Jt) = π−1(∪tJt)
4An existence theory for J-holomorphic curves had to wait until the recent work of Don-

aldson and Taubes.
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is a smooth (and also oriented) manifold with boundary

∂W = M(A, J1) ∪ −M(A, J0).

It follows that the evaluation map

evJ : M(A, J)×G S2 →M, (u, z) 7→ u(z),

is independent of the choice of (regular) J up to oriented bordism.5 (Here G =
PSL(2,C) is the reparametrization group and has dimension 6.) In particular,
if we could ensure that everything is compact and if we arrange that ev maps
between manifolds of the same dimension then the degree of this map would be
independent of J .

In the case of the nonsqueezing theorem we are interested in looking at
curves in the class A = [S2 × pt] in the cylinder S2 × T 2n−2. Thus c1(A) = 2
since the normal bundle to S2 × pt is trivial (as a complex vector bundle with
the induced structure from Jsplit.) Thus

dim(M(A, J)×G S2) = 2(c1(A) + n)− 6 + 2
= 4 + 2n− 6 + 2 = 2n = dim(M).

Further when J = Jsplit the unparametrized moduli space M(A, J)/G) is com-
pact (it is diffeomorphic to T 2n−2) and evJ has degree 1. It is also possible to
check that Jsplit is regular. So the problem is to check that compactness holds
for all J . If so, we would know that evJ has degree 1 for all regular J , ie there
is at least one J-holomorphic curve through every point.

Compactness

This is the most interesting part of the theory and leads to all sorts of new
developments such as the connection with stable maps and Deligne–Mumford
compactifications.

We proved the following lemma at the end of Lecture 4. It is the basic reason
why spaces of J-holomorphic curves can be compactified.

Lemma 5.1 If u is J-holomorphic for some ω-compatible J then

‖u‖1,2 =
∫

S2
u∗(ω) = gJ -area of (Imu).

5Two maps, ei : Mi → X for i = 1, 2, are said to be oriented bordant if there is an oriented
manifold W with boundary ∂W = M1 ∪ (−M2) and a map e : W → X that restricts to ei on
the boundary component Mi. Often the compactness that is needed to get any results from
this notion is built into the definition. For example, if all manifolds M1, M2, W are compact
and if M1, M2 have no boundary then bordant maps ei represent the same homology class.
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Here ‖u‖1,2 denotes the L2-norm of the first derivative of u. If we just knew a
little more we would have compactness by the following basic regularity theorem
for solutions of elliptic differential equations.

Lemma 5.2 If un : S2 → M are J-holomorphic curves such that for some
p > 2 and K <∞

‖un‖1,p ≤ K,

then a subsequence of the un converges uniformly with all derivatives to a J-
holomorphic map u∞.

It follows from the above two lemmas that if un ∈ M(A, J) is a sequence
with no convergent subsequence then the size of the derivatives dun must tend
to infinity. In other words

cn = max
z∈S2

|dun(z)| → ∞.

By reparametrizing by suitable rotations we can assume that this maximum is
always assumed at the point 0 ∈ C ⊂ C∪∞ = S2. The claim is that as n→∞
a “bubble” is forming at 0, i.e. the image curve is breaking up into two or more
spheres. To see this analytically consider the reparametrized maps vn : C →M
defined by

vn(z) = un(z/cn).

Then
|dvn(0)| = 1 and |dvn(z)| ≤ 1, z ∈ C.

Therefore by Lemma 5.2 a suitable subsequence of the vn converge to a map v∞ :
C →M . Moreover because the energy (or symplectic area) of the image of the
limit v∞ is bounded (by ω(A)), the image points v∞(z) converge as z →∞. In
other words v∞can be extended to a map v∞ : S2 →M . (Here we are applying
a removable singularity theorem for J-holomorphic maps v : D2 − {0} → M
that have finite area.)

Usually the image curve C∞ = v∞(S2) will be just a part of the limit of
the set-theoretic limit of the curves Cn = un(S2). What we have done in
constructing C∞ is focus on the part of Cn that is the image of a very small
neighborhood of 0, and there usually are other parts of Cn (separated by a
“neck”.) Thus typically the the curves Cn converge (as point sets) to a union
of several spheres, and the bubble C∞ is just one of them. (Such a union of
spheres is often called a “cusp-curve” or reducible curve.) It can happen that
the bubble C∞ is the whole limit of the Cn. But in this case one can show
that it is possible to reparametrize the original maps un so that they converge.
In other words, the un converge in the space M(A, J)/G of unparametrized
curves. For example, if we started with a sequence of the form u ◦ γn where γn

is a nonconvergent sequence in the reparametrization group G, then the effect
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of the reparametrizations vn of un is essentially to undo the γn. More precisely,
vn would have the form u ◦ γ′n where the γ′n do converge in G.

This argument (when made somewhat more precise) shows that the only way
the unparametrized moduli space M(A, J)/G can be noncompact is if there is a
reducible J-holomorphic curve in class A consisting of several nontrivial spheres
that represent classes A1, A2, . . .. Since each ω(Ai) > 0, this is possible only
when ω(A) is not minimal (among all positive values of ω on spheres). In
particular, when M = S2×T 2n−2, π2(M) is generated by A. Therefore there is
no reducible J-holomorphic curve in class A, andM(A, J)/G is always compact.
Hence the space M(A, J) ×G S2 is also always compact. This completes our
sketch of the proof of the nonsqueezing theorem.
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